System of Generalized Vector Quasi-Equilibrium Problems with Applications to Fixed Point Theorems for a Family of Nonexpansive Multivalued Mappings

LAI-JIU LIN
Department of Mathematics, National Changhua University of Education, Changhua, 50058, Taiwan

(Received 20 April 2004; accepted in revised form 17 March 2005)

Abstract

In this paper, we establish the existence theorems of the generalized vector quasi-equilibrium problems. From some existence theorem, we establish fixed point theorems for a family of lower semicontinuous or nonexpansive multivalued mappings. We also obtain the existence theorems of system of mixed generalized vector variational-like inequalities and existence theorems of the Debreu vector equilibrium problems and the Nash vector equilibrium problems.

Key words: generalized vector quasi-equilibrium problem, nonexpansive multivalued map, quasiconvex, quasiconvex-like, upper(lower) semicontinuous multivalued map

1. Introduction

Let E be a topological vector space (in short t.v.s.), X be a nonempty subset of E and $f: X \times X \rightarrow R$ be a function with $f(x, x) \geqslant 0$ for all $x \in X$, then the scalar equilibrium problem is to find $\bar{x} \in X$ such that

$$
f(\bar{x}, y) \geqslant 0 \text { for all } y \in X .
$$

The equilibrium problem contains optimization problems, variational inequalities problems, the Nash equilibrium problems, fixed point problems and complementary problems as special cases (see [5]). This problem was extensively investigated and generalized to the vector equilibrium problems for single valued or multivalued mappings [8,12,15,19-24].

Let I be an index set. For each $i \in I$, let Z_{i} be a Hausdorff t.v.s. and let X_{i} and D_{i} be nonempty subsets of two Hausdorff t.v.s. E_{i} and V_{i}, respectively. Let $S_{i}: X \rightarrow X_{i}, T_{i}: X \rightarrow D_{i}, C_{i}: X \multimap Z_{i}$ be multivalued mappings with nonempty values and let $F_{i}: D_{i} \times X \times X_{i} \rightarrow Z_{i}$ be a multivalued mapping, where $X=\Pi_{i \in I} X_{i}$.
In this paper, we study the following classes of the system of the generalized vector quasi-equilibrium problems:
(1) find $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for all $i \in I, \bar{x}_{i} \in \operatorname{cl} S_{i}(\bar{x}), F_{i}\left(t_{i}, \bar{x}, y_{i}\right) \subset$ $C_{i}(\bar{x})$ for all $y_{i} \in S_{i}(\bar{x})$, and for all $t_{i} \in T_{i}(\bar{x})$;
(2) find $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for all $i \in I, \bar{x}_{i} \in c l S_{i}(\bar{x})$ and for each $y_{i} \in$ $S_{i}(\bar{x})$, there exists $t_{i} \in T_{i}(\bar{x})$ such that $F_{i}\left(t_{i}, \bar{x}, y_{i}\right) \cap C_{i}(\bar{x}) \neq \varnothing$;
(3) find $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for each $i \in I, \bar{x}_{i} \in c l S_{i}(\bar{x})$, $F_{i}\left(t_{i}, \bar{x}, y_{i}\right) \cap\left(-\operatorname{int} C_{i}(\bar{x})\right)=\varnothing$ for all $y_{i} \in S_{i}(\bar{x})$ and all $t_{i} \in T_{i}(\bar{x})$;
(4) find $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for each $i \in I, \bar{x}_{i} \in \operatorname{clS} S_{i}(\bar{x})$, and for each $y_{i} \in S_{i}(\bar{x})$, there exists $t_{i} \in T_{i}(\bar{x})$ such that $F_{i}\left(t_{i}, \bar{x}, y_{i}\right) \not \subset\left(-\operatorname{int} C_{i}(\bar{x})\right)$.

Recently Lin et al. [26] studied the following problems:
(i) find ($\bar{x}, \bar{y}) \in X \times Y$ such that for each $i \in I, \bar{x}_{i} \in c l S_{i}(\bar{x}), \bar{y}_{i} \in c l T_{i}(\bar{x})$ and $f_{i}\left(\bar{x}, \bar{y}, u_{i}\right) \subset C_{i}(\bar{x})$ for all $u_{i} \in S_{i}(\bar{x})$;
(ii) find $(\bar{x}, \bar{y}) \in X \times Y$ such that $\bar{x}_{i} \in c l S_{i}(\bar{x}), \bar{y}_{i} \in c l T_{i}(\bar{x})$ and $f_{i}\left(\bar{x}, \bar{y}, u_{i}\right) \cap$ $C_{i}(\bar{x}) \neq \varnothing$ for all $u_{i} \in S_{i}(\bar{x})$;
(iii) find $(\bar{x}, \bar{y}) \in X \times Y$ such that for each $i \in I, \bar{x}_{i} \in \operatorname{clS} S_{i}(\bar{x}), \bar{y}_{i} \in c l T_{i}(\bar{x})$ and $f_{i}\left(\bar{x}, \bar{y}, u_{i}\right) \cap\left(-\operatorname{int} C_{i}(\bar{x})\right)=\varnothing$ for all $u_{i} \in S_{i}(\bar{x})$;
(iv) find $(\bar{x}, \bar{y}) \in X \times Y$ such that for each $i \in I, \bar{x}_{i} \in c l S_{i}(\bar{x}), \bar{y}_{i} \in c l T_{i}(\bar{x})$ and $f_{i}\left(\bar{x}, \bar{y}, u_{i}\right) \not \subset\left(-\operatorname{int} C_{i}(\bar{x})\right)$ for all $u_{i} \in S_{i}(\bar{x})$,
where X_{i} and Y are nonempty subsets of two Hausdorff locally convex t.v.s., Z_{i} is a real Hausdorff t.v.s., $S_{i}: X=\Pi_{i \in I} X_{i} \multimap D_{i}, T_{i}: X \multimap H_{i}, C_{i}:$ $X \multimap Z_{i}$, and $f_{i}: X \times Y \times X_{i} \multimap Z_{i}$ are multivalued maps, D_{i} and H_{i} are two nonempty compact metrizable subsets of X_{i} and Y_{i}, respectively.

Lin et al. [25] also studied the following problems:
(i') find $\hat{x}, \hat{y} \in X$ such that for each $i \in I, \hat{x}_{i} \in \bar{S}_{i}(\hat{x}), \hat{y}_{i} \in \bar{T}_{i}(\hat{x})$ and $f_{i}\left(\hat{x}, \hat{y}, u_{i}\right) \subset C_{i}(\hat{x})$ for all $u_{i} \in S_{i}(\hat{x})$;
(ii') find $\hat{x}, \hat{y} \in X$ such that for each $i \in I, \hat{x}_{i} \in \bar{S}_{i}(\hat{x}), \hat{y}_{i} \in \bar{T}_{i}(\hat{x})$ and $f_{i}\left(\hat{x}, \hat{y}, u_{i}\right) \cap C_{i}(\hat{x})=\varnothing$ for all $u_{i} \in S_{i}(\hat{x})$;
(iii') find $\hat{x}, \hat{y} \in X$ such that for each $i \in I, \hat{x_{i}} \in \bar{S}_{i}(\hat{x}), \hat{y}_{i} \in \bar{T}_{i}(\hat{x})$ and $f_{i}\left(\hat{x}, \hat{y}, u_{i}\right) \cap\left(-\operatorname{int} C_{i}(\hat{x})\right)=\varnothing$ for all $u_{i} \in S_{i}(\hat{x})$;
(iv') find $\hat{x}, \hat{y} \in X$ such that for each $i \in I, \hat{x}_{i} \in \bar{S}_{i}(\hat{x}), \hat{y}_{i} \in \bar{T}_{i}(\hat{x})$, and $f_{i}\left(\hat{x}, \hat{y}, u_{i}\right) \not \subset\left(-\operatorname{int} C_{i}(\hat{x})\right)$ for all $u_{i} \in S_{i}(\hat{x})$,
where $f_{i}: X \times X \times X_{i} \multimap Z_{i}, T_{i}: X \multimap X_{i}, C_{i}: X \multimap Z_{i}$ and $S_{i}: X \multimap X_{i}$ are multivalued maps and $\hat{y}_{i} \in \overline{T_{i}}(\hat{x})$ means that $\left(\hat{x}, \hat{y}_{i}\right) \in \operatorname{clGr} T_{i}=$ closure of the graph of T_{i}.
Our problems, our approaches and results are different from Lin et al. [25, 26]. In Lin et al. [25, 26], $T_{i}(x)$ is assumed to be convex for all $x \in X$, but in this paper, we don't assume that $T_{i}(x)$ is convex for any $x \in X$.
Problems (1)-(4) contain the problems ($\left.1^{\prime}\right)-\left(4^{\prime}\right)$, respectively, as special cases:
(1') find $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for all $i \in I, \bar{x}_{i} \in \operatorname{cl} S_{i}(\bar{x})$, $\left\langle\theta_{i}\left(\bar{x}_{i}, t_{i}\right), \eta_{i}\left(y_{i}, \bar{x}_{i}\right)\right\rangle+f_{i}\left(\bar{x}, y_{i}\right) \in C_{i}(\bar{x})$ for all $y_{i} \in S_{i}(\bar{x}), t_{i} \in T_{i}(\bar{x}) ;$
(2') find $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for all $i \in I, \bar{x}_{i} \in c l S_{i}(\bar{x})$, and for each $y_{i} \in$ $S_{i}(\bar{x})$, there exists $t_{i} \in T_{i}(\bar{x})$ such that $\left\langle\theta_{i}\left(\bar{x}_{i}, t_{i}\right), \eta_{i}\left(y_{i}, \overline{x_{i}}\right)\right\rangle+f_{i}\left(\bar{x}, y_{i}\right) \in$ $C_{i}(\bar{x})$;
(3') find $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for all $i \in I, \bar{x}_{i} \in c l S_{i}(\bar{x})$, and for each $y_{i} \in$ $S_{i}(\bar{x})$, there exists $t_{i} \in T_{i}(\bar{x})$ such that $\left\langle\theta_{i}\left(\bar{x}_{i}, t_{i}\right), \eta_{i}\left(y_{i}, \bar{x}_{i}\right)\right\rangle+f_{i}\left(\bar{x}, y_{i}\right) \notin$ $\left(-\operatorname{int} C_{i}(\bar{x})\right)$, for all $y_{i} \in S_{i}(\bar{x})$ and all $t_{i} \in T_{i}(\bar{x})$, where $\theta_{i}: X_{i} \times$ $D_{i} \longrightarrow L\left(E_{i}, Z_{i}\right), \eta_{i}: X_{i} \times X_{i} \longrightarrow E_{i}, f_{i}: X \times X_{i} \longrightarrow Z_{i}$ are functions, $L\left(E_{i}, Z_{i}\right)=$ the space of continuous linear operators from E_{i} to Z_{i} and $D_{i} \subset L\left(E_{i}, Z_{i}\right)$;
(4') find $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for all $i \in I, \bar{x}_{i} \in c l S_{i}(\bar{x})$, and for each $y_{i} \in$ $S_{i}(\bar{x})$, there exists $t_{i} \in T_{i}(\bar{x})$ such that $\left\langle\theta_{i}\left(\bar{x}_{i}, t_{i}\right), \eta_{i}\left(y_{i}, \bar{x}_{i}\right)\right\rangle+f_{i}\left(\bar{x}, y_{i}\right) \notin$ $\left(-\operatorname{int} C_{i}(\bar{x})\right)$.

If $\eta_{i} \equiv 0$, and $f_{i}\left(x, y_{i}\right)=g_{i}\left(x^{i}, y_{i}\right)-g_{i}\left(x^{i}, x_{i}\right)$, the above four problems are reduced to the following two types of the Debreu vector equilibrium problems [9].
(1) find $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for all $i \in I, \bar{x}_{i} \in c l S_{i}(\bar{x})$ and $g_{i}\left(\bar{x}^{i}, y_{i}\right)-$ $g_{i}\left(\bar{x}^{i}, \bar{x}_{i}\right) \in C_{i}(\bar{x})$ for all $y_{i} \in S_{i}(\bar{x})$;
(2) find $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that $g_{i}\left(\bar{x}^{i}, y_{i}\right)-g_{i}\left(\bar{x}^{i}, \bar{x}_{i}\right) \notin\left(-\operatorname{int} C_{i}(\bar{x})\right)$ for all $y_{i} \in S_{i}(\bar{x})$.
Recently Ansari et al. [3] studied type (2) the Debreu vector equilibrium problems [9]. If $S_{i}(x)=X_{i}$ for all $x \in X$, then these two types of the Debreu vector equilibrium problems will be reduced to the Nash vector equilibrium problems [27]. If $\eta_{i} \equiv 0$ and $f_{i}\left(x, y_{i}\right)=g_{i}\left(y_{i}\right)-g_{i}\left(x_{i}\right)$, then ($\left.1^{\prime}\right)$ and (4') are reduced to the following problems, respectively:
(1) find $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for all $i \in I, \bar{x}_{i} \in \operatorname{clS} S_{i}(\bar{x})$ and $g_{i}\left(y_{i}\right)-$ $g_{i}\left(\bar{x}_{i}\right) \in C_{i}(\bar{x})$ for all $y_{i} \in S_{i}(\bar{x})$;
(2) find $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for all $i \in I, \bar{x}_{i} \in c l S_{i}(\bar{x})$ and $g_{i}\left(y_{i}\right)-$ $g_{i}\left(\bar{x}_{i}\right) \notin\left(-\operatorname{int} C_{i}(\bar{x})\right)$ for all $y_{i} \in S_{i}(\bar{x})$.
Problems (1)-(4) also contain fixed point problems for any collection of 1.s.c. or nonexpansive multivalued maps. Recently, Lin [23] studied problems (1),(3) and (4) under some monotonicity condition when I is a singleton. Fu [12] studied type (3) problem when I is a singleton, $S(x)=X$ for all $x \in X$ and F_{i} is a single valued function, Khanh et al. [18] studied some special cases of problems $\left(3^{\prime}\right)$ and (4^{\prime}) with some pseudomonotone assumption when I is a singleton. Till now, we do not know problems (1) and (3) being studied. Recently, Ansari et al. [1] studied system of vector equilibrium problem for single value functions. Ansari et al. [2] studied system of vector quasi-equilibrium problems. Ansari et al. [3] studied the system of
generalized vector quasi-equilibrium problems. But our results and methods are quite different from Ref.3. As applications of our result, we establish fixed point theorems for any family of lower semicontinuous or nonexpansive multivalued mappings defined on product of convex subsets of Banach spaces or product of convex subsets of Hilbert spaces. Our results are quite different from the existence results of fixed point theorems (see for examples $[13,14,16,17,30]$). We give a new approach to the study of fixed point theorems. In the final section, we give some applications to study system of vector mixed variational-like inequality problems from which we can establish the existence theorems of the Debreu vector equilibrium problems and the Nash vector equilibrium problems.

2. Preliminaries

Let X and Y be nonempty sets, a multivalued map $T: X \multimap Y$ is a function from X to the power set of Y . Let $A \subset X, B \subset Y, x \in X$ and $y \in Y$, we define $T(A)=\bigcup\{T(x): x \in A\} ; x \in T^{-}(y)$ if and only if $y \in T(x)$. For topological spaces X and Y, let $T: X \multimap Y, T$ is said to be (i) upper semicontinuous (in short u.s.c.) at $x \in X$ if for every open set V in Y with $T(x) \subset V$, there exists an open neighborhood $U(x)$ of x such that $T\left(x^{\prime}\right) \subset V$ for all $x^{\prime} \in U(x)$; (ii) lower semicontinuous (in short 1.s.c.) at $x \in X$ if for every open set V in Y with $T(x) \bigcap V \neq \emptyset$, there exists an open neighborhood $U(x)$ of x such that $T\left(x^{\prime}\right) \bigcap V \neq \emptyset$ for all $x^{\prime} \in U(x)$; (iii) T is u.s.c. (resp. 1.s.c.) on X if T is u.s.c. (resp. 1.s.c.) at every point of X; (iv) closed if $\operatorname{Gr} T=\{(x, y): x \in X, y \in T(x)\}$ is closed in $X \times Y$.

DEFINITION 2.1 Let X be a convex subset of a t.v.s. and let $C: X \multimap Z$ be a multivalued map such that for each $x \in X, C(x)$ is a closed convex cone with nonempty interior. A multivalued function $F: X \times X \multimap Z$ is called
(i) $C(x)$-quasiconvex if for any $x, y_{1}, y_{2} \in X$ and $\lambda \in[0,1]$, we have either

$$
F\left(x, y_{1}\right) \subset F\left(x, \lambda y_{1}+(1-\lambda) y_{2}\right)+C(x)
$$

or

$$
F\left(x, y_{2}\right) \subset F\left(x, \lambda y_{1}+(1-\lambda) y_{2}\right)+C(x) .
$$

(ii) $C(x)$ - quasiconvex - like if for any $x, y_{1}, y_{2} \in X, \lambda \in[0,1]$, we have either

$$
F\left(x, \lambda y_{1}+(1-\lambda) y_{2}\right) \subset F\left(x, y_{1}\right)-C(x)
$$

or

$$
F\left(x, \lambda y_{1}+(1-\lambda) y_{2}\right) \subset F\left(x, y_{2}\right)-C(x) .
$$

Remark 2.1 If $F: X \times X \rightarrow Z$ is a single valued function, then $C(x)-$ quasiconvex and $C(x)$-quasiconvex - like are equivalent. In this case, we have either

$$
F\left(x, y_{1}\right) \in F\left(x, \lambda y_{1}+(1-\lambda) y_{2}\right)+C(x)
$$

or

$$
F\left(x, y_{2}\right) \in F\left(x, \lambda y_{1}+(1-\lambda) y_{2}\right)+C(x) .
$$

Throughout this paper, all topological spaces are assumed to be Hausdorff. The following theorems are need in this paper.

PROPOSITION 2.1 [24]. Let E_{1}, E_{2} and Z be real t.v.s., X and Y be nonempty subsets of E_{1} and E_{2}, respectively. Let $F: X \times Y \multimap Z, S: X \multimap Y$ be multivalued maps.
(i) if both S and F are l.s.c., then $T: X \multimap Z$ defined by $T(x)=$ $\bigcup_{y \in S(x)} F(x, y)$ is l.s.c. on X;
(ii) if both F and S are u.s.c. with compact values, then T is an u.s.c. multivalued map with compact values.

PROPOSITION 2.2 [29]. Let X and Y be topological spaces, $F: X \multimap Y$ be a multivalued map. Then F is l.s.c. at $x \in X$ if and only if for any $y \in F(x)$ and for any net $\left\{x_{\alpha}\right\}$ in X converging to x, there is a net $\left\{y_{\alpha}\right\}$ such that $y_{\alpha} \in F\left(x_{\alpha}\right)$ for every α and y_{α} converging to y.

PROPOSITION 2.3 [4]. Let X and Y be topological spaces, $F: X \multimap Y$ be a multivalued map.
(i) if $F: X \multimap Y$ is an u.s.c. multivalued map with closed values, then F is closed;
(ii) if F is compact and $F: X \multimap Y$ is an u.s.c. multivalued map with compact values, then $F(X)$ is compact.

PROPOSITION 2.3 [10]. Let I be any index set, for all $i \in I$, let X_{i} be a nonempty convex subset of a t.v.s. E_{i} and let $S_{i}: X=\prod_{i \in I} X_{i} \multimap X_{i}$ be a multivalued map. Assume that the following conditions hold:
(i) for all $i \in I$, and for all $x \in X, S_{i}(x)$ is convex;
(ii) for all $i \in I, x=\left(x_{i}\right)_{i \in I} \in X, x_{i} \notin S_{i}(x)$;
(iii) for all $i \in I$, and for all $y_{i} \in X_{i}, S_{i}^{-}\left(y_{i}\right)$ is open in X; and
(iv) there exist a nonempty compact subset K of X and a nonempty compact convex subset M_{i} of X_{i} for all $i \in I$ such that for each $x \in X \backslash K$ there exists $j \in I$ satisfying $S_{j}(x) \bigcap M_{j} \neq \varnothing$.
Then there exists $\bar{x} \in X$ such that $S_{i}(\bar{x})=\varnothing$ for all $i \in I$.

PROPOSITION 2.4 [28]. Let E be a Banach space with a Fréchet differentiable norm. Then the duality mapping $J: E \rightarrow E^{*}$ is norm to norm continuous, where E^{*} is the dual space of E.

3. Existence Theorems of System of Generalized Vector Quasi-Equilibrium Problems

Let I be any index set, for each $i \in I$, let E_{i}, V_{i} and Z_{i} be real t.v.s., X_{i} be a nonempty closed convex subset of E_{i}, D_{i} be a nonempty subset of V_{i} and $X=\prod_{i \in I} X_{i}$. For each $i \in I$, let $C_{i}: X \multimap Z_{i}$ be a multivalued map such that $C_{i}(x)$ is a proper closed convex cone with apex at the origin and $\operatorname{int} C_{i}(x) \neq \varnothing$ for each $x \in X$. Let $S_{i}: X \multimap X_{i}, T_{i}: X \multimap D_{i}$ and $F_{i}: D_{i} \times X \times$ $X_{i} \multimap Z_{i}$ be multivalued maps with nonempty values. Throughout this section, unless otherwise specified, we fixed these notations and assumptions.

THEOREM 3.1 For each $i \in I$, suppose that
(i) for each $x=\left(x_{i}\right)_{i \in I} \in X$ and each $t_{i} \in D_{i}, F_{i}\left(t_{i}, x, x_{i}\right) \subset C_{i}(x)$;
(ii) for each $\left(t_{i}, x\right) \in D_{i} \times X, y_{i} \multimap F_{i}\left(t_{i}, x, y_{i}\right)$ is $C_{i}(x)$-quasiconvex;
that is, for any $y_{i}, y_{i}^{\prime} \in X_{i}, \lambda \in[0,1]$, either

$$
F_{i}\left(t_{i}, x, y_{i}\right) \subseteq F_{i}\left(t_{i}, x, \lambda y_{i}+(1-\lambda) y_{i}^{\prime}\right)+C_{i}(x)
$$

or
$F_{i}\left(t_{i}, x, y_{i}^{\prime}\right) \subseteq F_{i}\left(t_{i}, x, \lambda y_{i}+(1-\lambda) y_{i}^{\prime}\right)+C_{i}(x) ;$
(iii) $T_{i}: X \multimap D_{i}$ and $F_{i}: D_{i} \times X \times X_{i} \multimap Z_{i}$ are l.s.c. multivalued maps;
(iv) $\operatorname{cl} S_{i}: X \multimap X_{i}$ is u.s.c., $S_{i}^{-}\left(y_{i}\right)$ is open for all $y_{i} \in X_{i}, C_{i}: X \multimap Z_{i}$ is u.s.c. and $S_{i}(x)$ is a nonempty convex set for each $x \in X$;
(v) there exist a nonempty compact subset $K \subset X$ and a nonempty compact convex subset M_{i} of X_{i} for all $i \in I$ such that for each $x \in X \backslash K$, there exist $j \in I, y_{j} \in M_{j} \bigcap S_{j}(x)$ and $t_{j} \in T_{j}(x)$ such that $F_{j}\left(t_{j}, x, y_{j}\right) \not \subset C_{j}(x)$.

Then there exists $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$, such that for all $i \in I, \bar{x}_{i} \in \operatorname{cl} S_{i}(\bar{x})$ $F_{i}\left(t_{i}, \bar{x}, y_{i}\right) \subset C_{i}(\bar{x})$ for all $y_{i} \in S_{i}(\bar{x})$ and all $t_{i} \in T_{i}(\bar{x})$.

Proof. Let $A_{i}=\left\{x=\left(x_{i}\right)_{i \in I} \in X: x_{i} \in c l S_{i}(x)\right\}$. By (iv), it is easy to see that A_{i} is closed. Let $P_{i}: X \multimap X_{i}$ be defined by

$$
P_{i}(x)=\left\{y_{i} \in X_{i}: F_{i}\left(t_{i}, x, y_{i}\right) \not \subset C_{i}(x), \text { for some } t_{i} \in T_{i}(x)\right\},
$$

then $P_{i}(x)$ is convex for each $x \in X$. Indeed, if there exist $x_{0} \in X$, $y_{i}, y_{i}^{\prime} \in P_{i}\left(x_{0}\right)$ and $\lambda_{0} \in[0,1]$ such that $\lambda_{0} y_{i}+\left(1-\lambda_{0}\right) y_{i}^{\prime} \notin P_{i}\left(x_{0}\right)$. Then
$F_{i}\left(t_{i}, x_{0}, \lambda_{0} y_{i}+\left(1-\lambda_{0}\right) y_{i}^{\prime}\right) \subset C_{i}\left(x_{0}\right)$ for all $t_{i} \in T_{i}\left(x_{0}\right)$. By (ii), either

$$
F_{i}\left(t_{i}, x_{0}, y_{i}\right) \subset F_{i}\left(t_{i}, x_{0}, \lambda_{0} y_{i}+\left(1-\lambda_{0}\right) y_{i}^{\prime}\right)+C_{i}\left(x_{0}\right) \subset C_{i}\left(x_{0}\right)+C_{i}\left(x_{0}\right) \subset C_{i}\left(x_{0}\right)
$$

or

$$
F_{i}\left(t_{i}, x_{0}, y_{i}^{\prime}\right) \subset F_{i}\left(t_{i}, x_{0}, \lambda_{0} y_{i}+\left(1-\lambda_{0}\right) y_{i}^{\prime}\right)+C_{i}\left(x_{0}\right) \subset C_{i}\left(x_{0}\right)+C_{i}\left(x_{0}\right) \subset C_{i}\left(x_{0}\right)
$$

for all $t_{i} \in T_{i}\left(x_{0}\right)$.
But $y_{i}, y_{i}^{\prime} \in P_{i}\left(x_{0}\right)$, there exist $t_{i}, t_{i}^{\prime} \in T_{i}\left(x_{0}\right)$ such that $F_{i}\left(t_{i}, x_{0}, y_{i}\right) \not \subset C_{i}\left(x_{0}\right)$ and $F_{i}\left(t_{i}^{\prime}, x_{0}, y_{i}^{\prime}\right) \not \subset C_{i}\left(x_{0}\right)$. This leads to a contradiction. Therefore for each $x \in X, \lambda \in[0,1]$ and $y_{i}, y_{i}^{\prime} \in P_{i}(x)$, there exists $t_{i}^{\prime \prime} \in T_{i}(x)$ such that $F_{i}\left(t_{i}^{\prime \prime}, x, \lambda y_{i}+(1-\lambda) y_{i}^{\prime}\right) \not \subset C_{i}(x)$. This shows that $\lambda y_{i}+(1-\lambda) y_{i}^{\prime} \in P_{i}(x)$ and $P_{i}(x)$ is convex for all $x \in X$. By (iii) and Theorem 2.1 it follows that for each fixed $y_{i} \in X_{i}, P_{i}^{-}\left(y_{i}\right)$ is open. Indeed, if $x \in X \backslash P_{i}^{-}\left(y_{i}\right)$, then there exists a net $\left\{x^{\alpha}\right\}$ in $X \backslash P_{i}^{-}\left(y_{i}\right)$ such that $x^{\alpha} \rightarrow x$. Therefore, $x \in X$ and $F_{i}\left(T_{i}\left(x^{\alpha}\right), x^{\alpha}, y_{i}\right) \subset C_{i}\left(x^{\alpha}\right)$. Let $z_{i} \in F_{i}\left(T_{i}(x), x, y_{i}\right)$. By (iii) and Theorem 2.1 that $x \multimap F_{i}\left(T_{i}(x), x, y_{i}\right)$ is l.s.c. for each $y_{i} \in X_{i}$. By Theorem 2.2, there exists a net $\left\{z_{i}^{\alpha}\right\}$ in $F_{i}\left(T_{i}\left(x^{\alpha}\right), x^{\alpha}, y_{i}\right)$ such that $z_{i}^{\alpha} \rightarrow z_{i}$. Therefore $z_{i}^{\alpha} \in$ $C_{i}\left(x^{\alpha}\right)$. Since $C_{i}: X \multimap Z_{i}$ is an u.s.c. multivalued map with closed values, it follows from Theorem 2.3 that C_{i} is a closed multivalued map. Therefore, $z_{i} \in C_{i}(x)$ and $F_{i}\left(T_{i}(x), x, y_{i}\right) \subset C_{i}(x)$. We saw that $x \in X$. Therefore, $x \in X \backslash P_{i}^{-}\left(y_{i}\right)$ and $X \backslash P_{i}^{-}\left(y_{i}\right)$ is closed for all $y_{i} \in X$. This shows that $P_{i}^{-}\left(y_{i}\right)$ is open for all $y_{i} \in X_{i}$. Let $G_{i}: X \multimap X_{i}$ be defined by

$$
G_{i}(x)=\left\{\begin{array}{cl}
S_{i}(x) \cap P_{i}(x) & \text { if } x \in A_{i}, \\
S_{i}(x) & \text { if } x \notin A_{i} .
\end{array}\right.
$$

Then $G_{i}(x)$ is convex for all $x \in X$. By (i), $x_{i} \notin P_{i}(x)$ for each $x=\left(x_{i}\right)_{i \in I} \in$ X. Hence, $x_{i} \notin G_{i}(x)$ for each $x=\left(x_{i}\right)_{i \in I} \in X$. It is easy to see that $G_{i}{ }^{-}\left(y_{i}\right)=$ $\left[S_{i}^{-}\left(y_{i}\right) \cap P_{i}^{-}\left(y_{i}\right)\right] \cup\left[\left(X \backslash A_{i}\right) \cap S_{i}^{-}\left(y_{i}\right)\right]$. Since $S_{i}^{-}\left(y_{i}\right)$ and $P_{i}^{-}\left(y_{i}\right)$ is open for all $y_{i} \in X_{i}, G_{i}^{-}\left(y_{i}\right)$ is open for all $y_{i} \in X_{i}$. By(v), for each $x \in X \backslash K$, there exist $j \in I, y_{j} \in M_{j}$ such that $x \in G_{j}^{-}\left(y_{j}\right)$. Then by Theorem 2.4 that there exists $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that $G_{i}(\bar{x})=\varnothing$ for all $i \in I$. Since $S_{i}(x)$ is nonempty for all $x \in X, \bar{x} \in A_{i}$ and $S_{i}(\bar{x}) \cap P_{i}(\bar{x})=\varnothing$ for all $i \in I$. Therefore, for all $i \in I, \bar{x}_{i} \in c l S_{i}(\bar{x})$ and $F_{i}\left(t_{i}, \bar{x}, y_{i}\right) \subset C_{i}(\bar{x})$ for all $y_{i} \in S_{i}(\bar{x})$ and for all $t_{i} \in T_{i}(\bar{x})$.

Remark 3.1 In Theorem 3.1, we don't assume any convexity assumption on T_{i}. The methods, conclusions and assumptions are different from the previous result of this type of problems (see [25, 26]).

THEOREM 3.2 For each $i \in I$, suppose that
(i) for each $x=\left(x_{i}\right)_{i \in I} \in X$ and each $t_{i} \in D_{i}, F_{i}\left(t_{i}, x, x_{i}\right) \cap C_{i}(x) \neq \varnothing$;
(ii) for each $\left(t_{i}, x\right) \in D_{i} \times X, y_{i} \rightarrow F_{i}\left(t_{i}, x, y_{i}\right)$ is $C_{i}(x)$-quasiconvex-like;
(iii) $T_{i}: X \multimap D_{i}$ and $F_{i}: D_{i} \times X \times X_{i} \multimap Z_{i}$ are u.s.c. with nonempty compact values;
(iv) $\mathrm{clS}_{i}: X \multimap X_{i}$ and $C_{i}: X \multimap Z_{i}$ are u.s.c. multivalued maps. $S_{i}^{-}\left(y_{i}\right)$ is open for all $y_{i} \in X_{i}$ and $S_{i}(x)$ is a nonempty convex set for all $x \in X$;
(v) there exist a nonempty compact subset $K \subset X$ and a nonempty compact convex subset M_{i} of X_{i} for all $i \in I$ such that for each $x \in X \backslash K$, there exist $j \in I, y_{j} \in M_{j} \cap S_{j}(x)$ such that $F_{j}\left(t_{j}, x, y_{j}\right) \cap C_{j}(x)=\varnothing$ for all $t_{j} \in$ $T_{j}(x)$.
Then there exists $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for all $i \in I, \bar{x}_{i} \in \operatorname{clS}(\bar{x})$ and for each $y_{i} \in S_{i}(\bar{x})$, there exist $t_{i} \in T_{i}(\bar{x})$ such that $F_{i}\left(t_{i}, \bar{x}, y_{i}\right) \bigcap C_{i}(\bar{x}) \neq \emptyset$.
Proof. Let $P_{i}: X \multimap X_{i}$ be defined by

$$
P_{i}(x)=\left\{y_{i} \in X_{i}: F_{i}\left(t_{i}, x, y_{i}\right) \bigcap C_{i}(x)=\varnothing \text { for all } t_{i} \in T_{i}(x)\right\} .
$$

$P_{i}(x)$ is convex for each $x \in X$. Indeed, if there exist $\lambda_{0} \in[0,1], x_{0} \in X$, $u_{i}, u_{i}^{\prime} \in P_{i}\left(x_{0}\right)$ such that $\lambda_{0} u_{i}+\left(1-\lambda_{0}\right) u_{i}^{\prime} \notin P_{i}\left(x_{0}\right)$, then there exist $t_{i}^{0} \in T_{i}\left(x_{0}\right)$ such that $F_{i}\left(t_{i}^{0}, x_{0}, \lambda_{0} u_{i}+\left(1-\lambda_{0}\right) u_{i}^{\prime}\right) \bigcap C_{i}\left(x_{0}\right) \neq \varnothing$. Let $z_{i} \in F_{i}\left(t_{i}{ }^{0}, x_{0}, \lambda_{0} u_{i}+\right.$ $\left.\left(1-\lambda_{0}\right) u_{i}^{\prime}\right) \cap C_{i}\left(x_{0}\right)$, then by (ii),
either

$$
F_{i}\left(t_{i}^{0}, x_{0}, \lambda_{0} u_{i}+\left(1-\lambda_{0}\right) u_{i}^{\prime}\right) \subset F_{i}\left(t_{i}^{0}, x_{0}, u_{i}\right)-C_{i}\left(x_{0}\right),
$$

or

$$
F_{i}\left(t_{i}^{0}, x_{0}, \lambda_{0} u_{i}+\left(1-\lambda_{0}\right) u_{i}{ }^{\prime}\right) \subset F_{i}\left(t_{i}^{0}, x_{0}, u_{i}^{\prime}\right)-C_{i}\left(x_{0}\right) .
$$

Therefore, either there exists $v_{i} \in F_{i}\left(t_{i}{ }^{0}, x_{0}, u_{i}\right)$ such that $z_{i} \in v_{i}-C_{i}\left(x_{0}\right)$ or there exists $v_{i}{ }^{\prime} \in F_{i}\left(t_{i}{ }^{0}, x_{0}, u_{i}^{\prime}\right)$ such that $z_{i} \in v_{i}{ }^{\prime}-C_{i}\left(x_{0}\right)$. Hence either

$$
v_{i} \in z_{i}+C_{i}\left(x_{0}\right) \subset C_{i}\left(x_{0}\right)+C_{i}\left(x_{0}\right) \subset C_{i}\left(x_{0}\right)
$$

or

$$
v_{i}^{\prime} \in z_{i}+C_{i}\left(x_{0}\right) \subset C_{i}\left(x_{0}\right) .
$$

This shows that either

$$
v_{i} \in F_{i}\left(t_{i}^{0}, x_{0}, u_{i}\right) \cap C_{i}\left(x_{0}\right) \neq \varnothing
$$

or

$$
v_{i}^{\prime} \in F_{i}\left(t_{i}^{0}, x_{0}, u_{i}^{\prime}\right) \cap C_{i}\left(x_{0}\right) \neq \varnothing .
$$

But $u_{i}, u_{i}^{\prime} \in P_{i}\left(x_{o}\right), F_{i}\left(t_{i}, x_{0}, u_{i}\right) \cap C_{i}\left(x_{0}\right)=\varnothing$ and $F_{i}\left(t_{i}, x_{0}, u_{i}^{\prime}\right) \cap C_{i}\left(x_{0}\right)=\varnothing$ for all $t_{i} \in T_{i}\left(x_{0}\right)$. This leads to a contradiction. This shows that for all $x \in$ $X, \lambda \in[0,1]$ and all $u_{i}, u_{i}^{\prime} \in P_{i}(x), \lambda u_{i}+(1-\lambda) u_{i}^{\prime} \in P_{i}(x)$ and $P_{i}(x)$ is convex for all $x \in X . P_{i}^{-}\left(y_{i}\right)$ is open for each $y_{i} \in X_{i}$. Indeed, if $x \in \overline{X \backslash P_{i}{ }^{-}\left(y_{i}\right)}$, then there exists a net $\left\{x^{\alpha}\right\}_{\alpha \in \Lambda}$ in $X \backslash P_{i}{ }^{-}\left(y_{i}\right)$ such that $x^{\alpha} \rightarrow x$. Therefore, $x_{\alpha} \in X$ and $F_{i}\left(T_{i}\left(x^{\alpha}\right), x^{\alpha}, y_{i}\right) \cap C_{i}\left(x^{\alpha}\right) \neq \emptyset$. Let $z_{i}^{\alpha} \in F_{i}\left(T_{i}\left(x^{\alpha}\right), x^{\alpha}, y_{i}\right) \cap$ $C_{i}\left(x^{\alpha}\right)$. By (iii) and Theorem 2.1 that for each $y_{i} \in X_{i}, x \multimap F_{i}\left(T_{i}(x), x, y_{i}\right)$ is an u.s.c. multivalued map with compact values. Let $L=\left\{x_{\alpha}\right\}_{\alpha \in \Lambda} \cup\{x\}$. Then L is a compact set. By Theorem 2.3 that $F_{i}\left(T_{i}(L), L, y_{i}\right)$ is a compact set in Z_{i}. Therefore $\left\{z_{i}{ }^{\alpha}\right\}$ has a subnet $\left\{z_{i}{ }^{\alpha}\right\}$ converges to $z_{i} \in F_{i}\left(T_{i}(L), L, y_{i}\right)$. Since for each $y_{i} \in X_{i}$, the multivalued map $x-\circ F_{i}\left(T_{i}(x), x, y_{i}\right)$ and C_{i} are u.s.c. with compact values, it follows from Theorem 2.3 that for each fixed $y_{i} \in X_{i}, x \rightarrow F_{i}\left(T_{i}(x), x, y_{i}\right)$ and C_{i} are closed. Therefore, $x \in X$ and $z_{i} \in$ $F_{i}\left(T_{i}(x), x, y_{i}\right) \cap C_{i}(x) \neq \varnothing$. This shows that $X \backslash P_{i}^{-}\left(y_{i}\right)$ is closed for each $y_{i} \in X_{i}$. Hence $P_{i}{ }^{-}\left(y_{i}\right)$ is open for each $y_{i} \in X_{i}$. Let $A_{i}=\left\{x \in X: x_{i} \in c l S_{i}(x)\right\}$. Then by (iv), A_{i} is closed. Let $G_{i}: X \multimap X_{i}$ be defined by

$$
G_{i}(x)=\left\{\begin{array}{cc}
S_{i}(x) \cap P_{i}(x) & \text { if } x \in A_{i}, \\
S_{i}(x) & \text { if } x \notin A_{i} .
\end{array}\right.
$$

Then $G_{i}(x)$ is convex for all $x \in X$. By (i), $x_{i} \notin P_{i}(x)$ for each $x=\left(x_{i}\right)_{i \in I} \in X$. Therefore, $x_{i} \notin G_{i}(x)$ for each $x=\left(x_{i}\right)_{i \in I} \in X$. It is easy to see that $G_{i}^{-}\left(y_{i}\right)=$ $\left[S_{i}^{-}\left(y_{i}\right) \cap P_{i}^{-}\left(y_{i}\right)\right] \cup\left[\left(X \backslash A_{i}\right) \cap S_{i}^{-}\left(y_{i}\right)\right]$. Since $S_{i}^{-}\left(y_{i}\right)$ and $P_{i}^{-}\left(y_{i}\right)$ are open for all $y_{i} \in X_{i}, G_{i}^{-}\left(y_{i}\right)$ is open for all $y_{i} \in X_{i}$, by (v), for each $x \in X \backslash K$, there exists $j \in I, y_{j} \in M_{j}$ such that $x \in G_{j}^{-}\left(y_{j}\right)$. Then it follows from Theorem 2.4 that there exists $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for all $i \in I, \bar{x}_{i} \in c l S_{i}(\bar{x})$, and for each $y_{i} \in S_{i}(\bar{x})$ there exists $t_{i} \in T_{i}(\bar{x})$ such that $F_{i}\left(t_{i}, \bar{x}, y_{i}\right) \cap C_{i}(\bar{x}) \neq \varnothing$.

Following the same argument as Theorem 3.2, we can prove the following theorem.

THEOREM 3.3 For each $i \in I$, suppose that
(i) for each $x=\left(x_{i}\right)_{i \in I} \in X$ and each $t_{i} \in D_{i}, F_{i}\left(t_{i}, x, x_{i}\right) \not \subset\left(-\operatorname{int} C_{i}(x)\right)$;
(ii) for each $\left(t_{i}, x\right) \in D_{i} \times X, y_{i}-0 F_{i}\left(t_{i}, x, y_{i}\right)$ is $C_{i}(x)$-quasiconvex-like;
(iii) $T_{i}: X \rightarrow D_{i}$ and $F_{i}: D_{i} \times X \times X_{i}-\circ Z_{i}$ are u.s.c. multivalued maps with nonempty compact values;
(iv) $c S_{i}: X \multimap X_{i}$ and $C_{i}: X \multimap Z_{i}$ are u.s.c. multivalued maps, $S_{i}^{-}\left(y_{i}\right)$ is open for all $y_{i} \in X_{i}$ and $S_{i}(x)$ is a nonempty convex subset of X_{i} for all $x \in X$;
(v) there exist a nonempty compact subset $K \subset X$ and a nonempty compact convex subset M_{i} of X_{i} for all $i \in I$ such that for each $x \in X \backslash K$ there exist $j \in I, y_{j} \in M_{j} \cap S_{j}(x)$ such that $F_{j}\left(t_{j}, x, y_{j}\right) \subset\left(-\operatorname{int} C_{j}(x)\right)$ for all $t_{j} \in T_{j}(x)$.
Then there exists $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for all $i \in I, \bar{x}_{i} \in \operatorname{cl} S_{i}(\bar{x})$ and for each $y_{i} \in S_{i}(\bar{x})$ there exists $t_{i} \in T_{i}(\bar{x})$ with $F_{i}\left(t_{i}, \bar{x}, y_{i}\right) \not \subset\left(-\operatorname{int} C_{i}(\bar{x})\right)$.

Proof. Let $P_{i}: X \multimap X_{i}$ be defined by

$$
P_{i}(x)=\left\{y_{i} \in X_{i}: F_{i}\left(t_{i}, x, y_{i}\right) \subset\left(-\operatorname{int} C_{i}(x)\right) \text { for all } t_{i} \in T_{i}(x)\right\} .
$$

Then $P_{i}(x)$ is convex for each $x \in X$. Indeed, if $u_{i}, u_{i}{ }^{\prime} \in P_{i}(x)$ and $\lambda \in$ $[0,1]$. Then for all $t_{i} \in T_{i}(x)$,

$$
F_{i}\left(t_{i}, x, u_{i}\right) \subset-\operatorname{int} C_{i}(x) \text { and } F_{i}\left(t_{i}, x, u_{i}^{\prime}\right) \subset\left(-\operatorname{int} C_{i}(x)\right) .
$$

For any $t_{i} \in T_{i}(x)$, by (ii) either

$$
\begin{aligned}
F_{i}\left(t_{i}, x, \lambda u_{i}+(1-\lambda) u_{i}^{\prime}\right) & \subset F_{i}\left(t_{i}, x, u_{i}\right)-C_{i}(x) \subset\left(-\operatorname{int} C_{i}(x)\right)-C_{i}(x) \\
& \subset\left(-\operatorname{int} C_{i}(x)\right)
\end{aligned}
$$

or

$$
\begin{aligned}
F_{i}\left(t_{i}, x, \lambda u_{i}+(1-\lambda) u_{i}^{\prime}\right) & \subset F_{i}\left(t_{i}, x, u_{i}^{\prime}\right)-C_{i}(x) \subset\left(-\operatorname{int} C_{i}(x)\right)-C_{i}(x) \\
& \subset\left(-\operatorname{int} C_{i}(x)\right) .
\end{aligned}
$$

Therefore $\lambda u_{i}+(1-\lambda) u_{i}^{\prime} \in P_{i}(x)$ for all $\lambda \in[0,1]$ and $P_{i}(x)$ is convex. Then following the similar argument as Theorem 3.2, we can prove Theorem 3.3.

With the same argument as in Theorem 3.1, we can prove the following theorem.

THEOREM 3.4 For each $i \in$ I, suppose that
(i) for each $x=\left(x_{i}\right)_{i \in I} \in X$ and each $t_{i} \in D_{i}, F_{i}\left(t_{i}, x, x_{i}\right) \cap\left(-\operatorname{int} C_{i}(x)\right)=\varnothing$;
(ii) for each $\left(t_{i}, x\right) \in D_{i} \times X, y_{i} \rightarrow F_{i}\left(t_{i}, x, y_{i}\right)$ is $C_{i}(x)$-quasiconvex;
(iii) $T_{i}: X \multimap D_{i}$ and $F_{i}: D_{i} \times X \times X_{i} \multimap Z_{i}$ are l.s.c. multivalued maps;
(iv) $c S_{i}: X \multimap X_{i}$ and $W_{i}: X \multimap Z_{i}$ are u.s.c. multivalued maps, $S_{i}^{-}\left(y_{i}\right)$ is open for all $y_{i} \in X_{i}$ and $S_{i}(x)$ is nonempty for all $x \in X$;
(v) there exist a nonempty compact subset $K \subset X$ and a nonempty compact convex subset M_{i} of X_{i} for all $i \in I$ such that for each $x \in X \backslash K$, there exist $j \in I, y_{j} \in M_{j} \cap S_{j}(x)$ and $t_{j} \in T_{j}(x)$ such that $F_{j}\left(t_{j}, x, y_{j}\right) \cap$ $\left(-\operatorname{int} C_{j}(x)\right) \neq \varnothing$.

Then there exist $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for all $i \in I, \overline{x_{i}} \in \operatorname{cl} S_{i}(\bar{x})$, $F_{i}\left(t_{i}, \bar{x}, y_{i}\right) \cap\left(-\operatorname{int} C_{i}(\bar{x})\right)=\varnothing$ for all $y_{i} \in S_{i}(\bar{x})$, and for all $t_{i} \in T_{i}(\bar{x})$.

4. Applications to Fixed Point Theorems

As simple consequences of Theorems 3.1 and 3.3 , we establish the existence theorems for any collection of multivalued mappings.

DEFINITION 4.1 Let $\left(E,\|\cdot\|_{E}\right)$ and $\left(V,\|\cdot\|_{V}\right)$ be normed spaces, X be a subset of E and Y be a subset of V. Let $F: X \multimap Y$ be a multivalued map, F is said to be nonexpansive if for all $x, y \in X, u \in F(x)$, there exists $w \in F(y)$, such that $\|u-w\|_{V} \leqslant\|x-y\|_{E}$.

PROPOSITION 4.1 Let $\left(E,\|\cdot\|_{E}\right)$ and $\left(V,\|\cdot\|_{V}\right)$ be normed spaces, X be a subset of E, and Y be a subset of V. Let $F: X \rightarrow Y$ be a nonexpansive multivalued map. Then F is l.s.c.

Proof. Let $x \in X$ and $\left\{x_{n}\right\}$ be any sequence in X converges to x. Suppose $u \in F(x)$. If $x_{n}=x$ for some $n \in N$, then we let $u_{n}=u$. Since $F: X \rightarrow \bigcirc Y$ is nonexpansive, if $x_{m} \neq x$ for $m \in N$, there exists $u_{m} \in F\left(x_{m}\right)$ such that $\| u-$ $u_{m}\|\leqslant\| x-x_{m} \|$. Therefore, $\left\|u-u_{n}\right\| \leqslant\left\|x-x_{n}\right\|$ for all $n \in N$. Hence $u_{n} \rightarrow u$. Then by Theorem 2.2 that $F: X \multimap Y$ is 1.s.c.

THEOREM 4.1 Let I be any index set. For each $i \in I$, let E_{i} be a Banach space with a Fréchet differentiable norm. X_{i} be a closed convex subset of E_{i}, D_{i} be a nonempty subset of X_{i} and $X=\prod_{i \in I} X_{i}$. For each $i \in I$, suppose that
(i) $T_{i}: X \multimap D_{i}$ is a l.s.c. multivalued map with nonempty values; and
(ii) there exist a nonempty compact subset K of X and a nonempty compact convex subset M_{i} of X_{i} for each $i \in I$ such that for each $x \in$ $X \backslash K$, there exist $j \in I, y_{j} \in M_{j}$, such that

$$
\left\langle x_{j}-y_{j}, J_{j}\left(t_{j}-x_{j}\right)\right\rangle<0
$$

for some $t_{j} \in T_{j}(x)$, where J_{j} is the duality mapping of E_{j}.

Then there exists $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that $\bar{x}_{i} \in T_{i}(\bar{x})$ for all $i \in I$.
Proof. Let $F_{i}\left(t_{i}, x, y_{i}\right)=\left\{\left\langle x_{j}-y_{j}, J_{j}\left(t_{j}-x_{j}\right)\right\rangle\right\}$. Then by Theorem 2.5 that $\left(t_{i}, x, y_{i}\right) \rightarrow\left\langle x_{j}-y_{j}, J_{j}\left(t_{j}-x_{j}\right)\right\rangle$ is a continuous function. Let $Z_{i}=$ $\mathbb{R}, C_{i}(x)=[0, \infty)$ and $S_{i}(x)=X$ for all $x \in X$. Then by Theorem 3.1 that
$\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for all $i \in I, \bar{x}_{i} \in X_{i}$ and $\left\langle\bar{x}_{i}-y_{i}, J_{i}\left(t_{i}-\bar{x}_{i}\right)\right\rangle \geqslant 0$ for all $y_{i} \in X_{i}$ and all $t_{i} \in T_{i}(\bar{x})$. Let $t_{i} \in T_{i}(\bar{x})$ and $y_{i}=t_{i}$, then

$$
\left\|\bar{x}_{i}-t_{i}\right\|^{2}=\left\langle t_{i}-\bar{x}_{i}, J_{i}\left(t_{i}-\bar{x}_{i}\right)\right\rangle \leqslant 0
$$

for all $i \in I$. Therefore, $\overline{x_{i}}=t_{i} \in T_{i}(\bar{x})$ for all $i \in I$.

Remark 4.1 If for each $i \in I, X_{i}$ is compact, then condition (ii) of Theorem 4.1 is satisfied. Indeed, if X_{i} is compact, then we take $K=\Pi_{i \in I} X_{i}=X$. Therefore $X \backslash K=\emptyset$ and condition (ii) of theorem 4.1 is satisfied.

COROLLARY 4.1 Let I be any index set. For each $i \in I$, let E_{i} be a Hilbert space, X_{i} be a closed convex subset of E_{i}, D_{i} be a nonempty subset of X_{i} and $X=\prod_{i \in I} X_{i}$. For each $i \in I$, suppose that
(i) $T_{i}: X \multimap D_{i}$ is a l.s.c. multivalued map with nonempty values; and
(ii) there exist a nonempty compact subset K of X and a nonempty compact convex subset M_{i} of X_{i} for all $i \in I$ such that for each $x=\left(x_{i}\right)_{i \in I} \in$ $X \backslash K$, there exist $j \in I, y_{j} \in M_{j}$ such that $\left\langle x_{j}-t_{j}, y_{j}-x_{j}\right\rangle<0$ for some $t_{j} \in T_{j}(x)$.

Then there exists $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that $\bar{x}_{i} \in T_{i}(\bar{x})$ for all $i \in I$.
Proof. Let $S\left(E_{i}\right)=\left\{x_{i} \in E_{i}: \quad\left\|x_{i}\right\|=1\right\}$, then $\lim _{t \rightarrow 0}\left(\left\|x_{i}+t y_{i}\right\|-\left\|x_{i}\right\|\right) / t=$ $\lim _{t \rightarrow 0}\left(\left\|x_{i}+t y_{i}\right\|^{2}-\left\|x_{i}\right\|^{2}\right) /\left(t\left(\left\|x_{i}+t y_{i}\right\|+\left\|x_{i}\right\|\right)\right)=\lim _{t \rightarrow 0}\left(2 t<x_{i}, y_{i}>+t^{2}\right.$ $\left.\|y\|^{2} /\right) \quad\left(t\left(\left\|x_{i}+t y_{i}\right\|+\left\|x_{i}\right\|\right)\right)=<x_{i}, y_{i}>$ for all $x_{i}, y_{i} \in S\left(E_{i}\right)$. Therefore Hilbert space E_{i} has a Fréchet differentiable norm. Corollary 4.1 follows from Theorem 3.1.

COROLLARY 4.2. Let I, E_{i} be the same as Corollary 4.1. For each $i \in I$, let X_{i} be a closed bounded convex subset of E_{i}, D_{i} be a nonempty subset of X_{i} and $T_{i}: X=\prod_{i \in I} X_{i} \rightarrow D_{i}$ be a l.s.c. multivalued map. Then there exists $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that $\bar{x}_{i} \in T_{i}(\bar{x})$ for all $i \in I$.

Proof. Since E_{i} is a reflexive Banach space and X_{i} is a closed bounded convex subset of E_{i}, X_{i} is weakly compact. Therefore $X=\prod_{i \in I} X_{i}$ is weakly compact. Then the conclusion of Corollary 4.2 follows from Theorem 4.1.

THEOREM 4.2 In Theorem 4.1, if condition (i) is replaced by (i^{\prime}), then we have the same conclusion, where (i^{\prime}) $T_{i}: X \multimap D_{i}$ is a nonexpansive multivalued map with nonempty values.

Proof. Theorem 4.2 follows from Theorem 4.1 and Proposition 4.1.

If $T_{i}: X \multimap D_{i}$ is a single valued nonexpansive function, we have the following fixed point theorem.

COROLLARY 4.3 Let I be any index set. For each $i \in I$, let E_{i} be a Hilbert space, X_{i} be a closed convex subset of E_{i}, D_{i} be a nonempty subset of X_{i}, $X=\prod_{i \in I} X_{i}$. and $T_{i}: X \rightarrow D_{i}$. For each $i \in I$, suppose that
(i) for all $x, y \in X,\left\|T_{i}(x)-T_{i}(y)\right\| \leqslant\|x-y\|$;
(ii) there exist a nonempty compact subset K of X and a nonempty compact convex subset M_{i} of X_{i} for all $i \in I$ such that for each $x \in X \backslash K$, there exist $j \in I, y_{j} \in M_{j}$ such that $\left\langle x_{j}-T_{j}(x), y_{j}-x_{j}\right\rangle<0$.

Then there exists $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that $\bar{x}_{i}=T_{i}(\bar{x})$ for all $i \in I$.

COROLLARY 4.4. Let E be a Hilbert space, X be a closed convex subset of E and D be a nonempty subset of X. Suppose that $T: X-\circ D$ satisfying the following conditions:
(i) T is a nonexpansive multivalued map;
(ii) there exist a nonempty compact subset K of X and a nonempty compact convex subset M of X such that for each $x \in X \backslash K$, there exist $y \in$ $M, u \in T(x)$ such that $\langle x-u, y-x\rangle<0$.

Then there exists $\bar{x} \in X$ such that $\bar{x} \in T(\bar{x})$.
COROLLARY $4.5[6,13,16]$. Let E be a Hilbert space, X be a closed bounded convex subset of $E, T: X \rightarrow X$ be a nonexpansive map. Then there exists $\bar{x} \in X$ such that $\bar{x}=T(\bar{x})$.

COROLLARY 4.6. Let I be any index set. For each $i \in I$, let E_{i} be a Banach space with a Fréchet differentiable norm, X_{i} be a compact convex subset of E_{i}, D_{i} be a nonempty subset of X_{i} and $X=\prod_{i \in I} X_{i}$. For each $i \in I$, suppose that $T_{i}: X \multimap D_{i}$ is a l.s.c. or a nonexpansive multivalued map with nonempty values.

Then these exists $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that $\bar{x}_{i} \in T_{i}\left(\bar{x}_{i}\right)$ for all $i \in I$.

Remark 4.2 Theorem 4.2 is different from the existing results of fixed point theorems of nonexpansive mappings even if I is a singleton and T_{i} is a single valued nonexpansive map. If I is a singleton, Theorem 4.1 is different from Theorem 1 [30].

THEOREM 4.3 In Theorem 4.1, if condition (i) is replaced by (i'), then the conclusion of Theorem 4.1 is true, where
(i') $T_{i}: X \multimap D_{i}$ be a multivalued map with nonempty values and $T_{i}^{-}\left(y_{i}\right)$ is open for all $y_{i} \in X_{i}$.
Proof. Since $T_{i}^{-}\left(y_{i}\right)$ is open for each $y_{i} \in X_{i}, T_{i}: X \multimap D_{i}$ is 1.s.c. and the conclusion of Theorem 4.3 follows from Theorem 4.1.

Remark 4.3 Theorem 4.3 is different from any generalization of FanBrowder fixed point theorem [7]. In Theorem 4.3, $T_{i}(x)$ is not assumed to be a convex set for each $x \in X$ and $i \in I$.

THEOREM 4.4 Let I be any index set. For each $i \in I$, let E_{i} be a Hilbert space, X_{i} be a closed convex subset of E_{i} and $X=\Pi_{i \in I} X_{i}$. For each $i \in I$, suppose that
(i) $T_{i}: X \multimap D_{i}$ is a multivalued map with nonempty values and $T_{i}^{-}\left(y_{i}\right)$ is open for all $y_{i} \in X_{i}$;
(ii) there exist a nonempty compact subset K of X and a nonempty compact convex subset M_{i} of X_{i} for all $i \in I$ such that for each $x=\left(x_{i}\right)_{i \in I} \in$ $X \backslash K$, there exist $j \in I, y_{j} \in M_{j}$ such that $\left\langle x_{j}-t_{j}, y_{j}-x_{j}\right\rangle<0$ for some $t_{j} \in T_{j}(x)$.

Then there exist $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that $\bar{x}_{i} \in T_{i}(\bar{x})$ for all $i \in I$.
COROLLARY 4.7. Let I be any index set. For each $i \in I$, let E_{i} be a Hilbert space, X_{i} be a closed bounded convex subset of E_{i}, D_{i} be a nonempty subset of X_{i}, and $X=\prod_{i \in I} X_{i}$. For each $i \in I$, suppose that $T_{i}: X \multimap D_{i}$ is a multivalued map with nonempty values and $T_{i}^{-}\left(y_{i}\right)$ is open for all $y_{i} \in X_{i}$. Then there exist $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that $\bar{x}_{i} \in T_{i}(\bar{x})$ for all $i \in I$.
Proof. Since X_{i} is weakly compact, $X=\prod_{i \in I} X_{i}$ is weakly compact and condition (ii) of Theorem 4.4 is satisfied. Then the conclusion of Corollary 4.4 follows from Theorem 4.6.

5. Existence Theorems of System of Generalized Vector Quasi-Mixed Variational-like Inequalities Problems

LEMMA 5.1. [11] Let W and Z be Hausdorff t.v.s. and $L(W, Z)$ be the t.v.s. with the σ-topology. Then the linear mapping $\langle\cdot, \cdot\rangle: L(W, Z) \times W \rightarrow Z$ is continuous in $L(W, Z) \times W$.

THEOREM 5.1. Let $I, E_{i}, V_{i}, X_{i}, C_{i}, D_{i}$ and S_{i} be the same as in section 3. For each $i \in I$, let $L\left(E_{i}, Z_{i}\right)$ be equipped with σ-topology,
$T_{i}: X \multimap L\left(E_{i}, Z_{i}\right)$ be a l.s.c. multivalued map with nonempty values, $D_{i} \subseteq$ $L\left(E_{i}, Z_{i}\right)$, let $q_{i}: X_{i} \times D_{i} \rightarrow L\left(E_{i}, Z_{i}\right), \eta_{i}: X_{i} \times X_{i} \rightarrow X_{i}$ and $g_{i}: X \times X_{i} \rightarrow$ Z_{i} be continuous vector-valued functions. For each $i \in I$, suppose that the following conditions hold:
(i) $S_{i}: X-\circ X_{i}$ is a multivalued map with nonempty convex values, $S_{i}^{-}\left(y_{i}\right)$ is open for all $y_{i} \in X_{i}$, and clS $S_{i}: X-\circ X_{i}$ is u.s.c.;
(ii) $C_{i}: X-\circ X_{i}$ is u.s.c., $\eta_{i}\left(x_{i}, x_{i}\right)=0, g_{i}\left(x, x_{i}\right)=0$ for all $x=\left(x_{i}\right)_{i \in I} \in X$;
(iii) for each $\left(t_{i}, x\right) \in D_{i} \times X, y_{i} \rightarrow\left\langle q_{i}\left(x_{i}, t_{i}\right), \eta_{i}\left(y_{i}, x_{i}\right)\right\rangle+g_{i}\left(x, y_{i}\right)$ is $C_{i}(x)-$ quasiconvex; and
(iv) there exist a nonempty compact subset K of X and a nonempty compact convex subset M_{i} of X_{i} for each $i \in I$ such that for each $x=\left(x_{i}\right)_{i \in I} \in X \backslash K$ there exist $j \in I$ and $y_{j} \in M_{j} \cap S_{j}(x)$ such that $\left\langle q_{j}\left(x_{j}, t_{j}\right), \eta_{j}\left(y_{j}, x_{j}\right)\right\rangle+g_{j}\left(x, y_{j}\right) \notin C_{j}(x)$ for some $t_{j} \in T_{j}(x)$.
Then there exists $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for each $i \in I, \bar{x}_{i} \in \operatorname{clS} S_{i}(\bar{x})$ and $\left\langle q_{i}\left(\bar{x}_{i}, t_{i}\right), \eta_{i}\left(y_{i}, \bar{x}_{i}\right)\right\rangle+g_{i}\left(\bar{x}, y_{i}\right) \in C_{i}(\bar{x})$ for all $y_{i} \in S_{i}(\bar{x})$ and all $t_{i} \in T_{i}(\bar{x})$.
Proof. Let $F_{i}\left(t_{i}, x, y_{i}\right)=\left\{\left\langle q_{i}\left(x_{i}, t_{i}\right), \quad \eta_{i}\left(y_{i}, x_{i}\right)\right\rangle+g_{i}\left(x, y_{i}\right)\right\}$. Then the conclusion of Theorem 5.1 follows from Lemma 5.1 and Theorem 3.1.

Remark. Condition (i) of Theorems 5.1 and Theorem 5.1 [25] are different. In Theorem 5.1 [25], S_{i} is assumed to be 1.s.c. The conclusion between these two theorems are also different.

COROLLARY 5.1 Let $I, L\left(E_{i}, Z_{i}\right), T_{i}, D_{i}, q_{i}, \eta_{i}$ and condition (i) be the same as Theorem 5.1. For each $i \in I$, let $\varphi_{i}: X_{i} \rightarrow Z_{i}$ be a continuous function. For each $i \in I$, suppose the following conditions hold:
(ii) $C_{i}: X \multimap Z_{i}$ is u.s.c., $\eta_{i}\left(x_{i}, x_{i}\right)=0$ for all $x=\left(x_{i}\right)_{i \in I} \in X$;
(iii) for each $\left(t_{i}, x\right) \in D_{i} \times X, y_{i} \rightarrow\left\langle q_{i}\left(x_{i}, t_{i}\right), \eta_{i}\left(y_{i}, x_{i}\right)\right\rangle+\varphi_{i}\left(y_{i}\right)$ is $C_{i}(x)-$ quasiconcave; and
(iv) there exist a nonempty compact subset K of X and a nonempty compact convex subset M_{i} of X_{i} for each $i \in I$ such that for each $x=$ $\left(x_{i}\right)_{i \in I} \in X \backslash K$, there exist $j \in I$ and $y_{j} \in M_{j} \cap S_{j}(x)$ such that $\left\langle q_{j}\left(x_{j}, t_{j}\right), \eta_{j}\left(y_{j}, x_{j}\right)\right\rangle+\varphi_{j}\left(y_{j}\right)-\varphi_{j}\left(x_{j}\right) \notin C_{j}(x)$ for some $t_{j} \in T_{j}(x)$.

Then there exists $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for each $i \in I, \bar{x}_{i} \in \operatorname{clS}(\bar{x})$ and $\left\langle q_{i}\left(\bar{x}_{i}, t_{i}\right), \eta_{i}\left(y_{i}, \bar{x}_{i}\right)\right\rangle+\varphi_{i}\left(y_{i}\right)-\varphi_{i}\left(\bar{x}_{i}\right) \in C_{i}(\bar{x})$ for all $y_{i} \in S_{i}(\bar{x})$ and all $t_{i} \in$ $T_{i}(\bar{x})$.
Proof. Let $g_{i}\left(x, y_{i}\right)=\varphi_{i}\left(y_{i}\right)-\varphi_{i}\left(x_{i}\right)$ in theorem 5.1.
COROLLARY 5.2. For each $i \in I$, let $\varphi_{i}: X \times X_{i} \rightarrow Z_{i}$ be a continuous function and $S_{i}: X-\circ X_{i}$ be a multivalued map with nonempty convex values. For each $i \in I$, suppose that the following conditions hold:
(i) $c l S_{i}: X-\circ X_{i}$ is u.s.c. and $S_{i}^{-}\left(y_{i}\right)$ is open for all $y_{i} \in X_{i}$;
(ii) for each $x \in X, y_{i} \rightarrow \varphi\left(x, y_{i}\right)$ is $C_{i}(x)$-quasuconvex;
(iii) there exist a nonempty compact subset K of X and a nonempty compact convex subset M_{i} of X_{i} for all $i \in I$ such that for each $x=$ $\left(x_{i}\right)_{i \in I} \in X \backslash K$, there exist $j \in I, y_{j} \in M_{j} \cap S_{j}(x)$ such that $\varphi_{j}\left(x^{j}, y_{j}\right)-$ $\varphi_{j}\left(x^{j}, x_{j}\right) \notin C_{j}(x)$.

Then there exists $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for all $i \in I, \quad \bar{x}_{i} \in \operatorname{clS} S_{i}(\bar{x})$, $\varphi_{i}\left(\bar{x}^{i}, y_{i}\right)-\varphi_{j}\left(\bar{x}^{i}, \bar{x}_{i}\right) \in C_{i}(\bar{x})$ for all $y_{i} \in S_{i}(\bar{x})$.

Proof. Let $l_{i} \equiv 0$ and $g_{i}\left(x, y_{i}\right)=\varphi_{i}\left(x^{i}, y_{i}\right)-\varphi_{i}\left(x^{i}, x_{i}\right)$ in Theorem 5.1.
Remark 5.1. If $S_{i}: X \multimap X_{i}$ is defined by $S_{i}(x)=X_{i}$ for all $x \in X$ then Corollary 5.2 is reduced to the Nash vector equilibrium theorems.

Applying Theorem 3.2 and following the same arguments as Theorem 5.1, we can prove the following theorem.

THEOREM 5.2. For each $i \in I$, suppose that $T_{i}: X-\circ X_{i}$ is an u.s.c. multivalued map with nonempty values. Suppose conditions (iii) and (iv) of Theorem 5.1 are replaced by (iv'), where
(iv') there exist a nonempty compact subset $K \subset X$ and a nonempty compact convex subset M_{i} of X_{i} for all $i \in I$ such that for each $x \in X \backslash K$, there exist $j \in I, y_{j} \in M_{j} \cap S_{j}(x)$ such that $\left\langle q_{j}\left(x_{j}, t_{j}\right), \eta_{j}\left(y_{j}, x_{j}\right)\right\rangle+g_{j}\left(x, y_{j}\right) \notin$ $C_{j}(x)$ for all $t_{j} \in T_{j}(x)$.
Then there exists $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$, such that for all $i \in I, \bar{x}_{i} \in \operatorname{clS} S_{i}(\bar{x})$ and for each $y_{i} \in S_{i}(\bar{x})$, there exists $t_{i} \in T_{i}(\bar{x})$ such that $\left\langle q_{i}\left(\bar{x}, t_{i}\right), \quad \eta_{i}\left(y_{i}, \bar{x}_{i}\right)\right\rangle+$ $g_{i}\left(\bar{x}, y_{i}\right) \in C_{i}(\bar{x})$.

Applying Theorem 3.3 and following the same argument as Theorem 5.1, we have the following theorem.

THEOREM 5.3. For each $i \in I$, suppose $T_{i}: X-\circ D_{i}$ is an u.s.c. multivalued map with nonempty values. For each $i \in I$, suppose that conditions (iv) of Theorem 5.1 are replaced by (iv'), where
(iv') there exist a nonempty compact subset $K \subset X$ and a nonempty compact convex subset M_{i} of X_{i} for all $i \in I$ such that for each $x \in X \backslash K$, there exist $j \in I, y_{j} \in M_{j} \cap S_{j}(x)$ such that $\left\langle q_{j}\left(x_{j}, t_{j}\right), \eta_{j}\left(y_{j}, x_{j}\right)\right\rangle+g_{j}\left(x, y_{j}\right) \in$ $\left(-\operatorname{int} C_{j}(x)\right)$ for all $t_{j} \in T_{j}(x)$.
Then there exists $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for each $i \in I, \bar{x}_{i} \in c l S_{i}(\bar{x})$ and for each $y_{i} \in S_{i}(\bar{x})$ there exists $t_{i} \in T_{i}(\bar{x})$ such that $\left\langle q_{i}\left(\bar{x}_{i}, t_{i}\right), \quad \eta_{i}\left(y_{i}, \bar{x}_{i}\right)\right\rangle+$ $g_{i}\left(\bar{x}, y_{i}\right) \notin\left(-\operatorname{int} C_{i}(\bar{x})\right)$.

Applying Theorem 3.4 and following the same argument as Theorem 5.1, we have Theorem 5.4.

THEOREM 5.4. For each $i \in I$, suppose that $T_{i}: X-\circ D_{i}$ is a l.s.c. multivalued map with nonempty values. Suppose condition (iv) of Theorem 5.1 is replaced by (iv'), where
(iv') there exist a nonempty compact subset $K \subset X$ and a nonempty compact convex subset M_{i} of X_{i} for all $i \in I$ such that for each $x \in X \backslash K$, there exist $j \in I, y_{j} \in M_{j} \cap S_{j}(x)$ such that $\left\langle q_{j}\left(x_{j}, t_{j}\right), \quad \eta_{j}\left(y_{j}, x_{j}\right)\right\rangle+$ $g_{j}\left(x, y_{j}\right) \notin\left(-\operatorname{int} C_{j}(x)\right)$ for some $t_{j} \in T_{j}(x)$.

Then there exists $\bar{x}=\left(\bar{x}_{i}\right)_{i \in I} \in X$ such that for all $i \in I, \bar{x}_{i} \in \operatorname{cl} S_{i}(\bar{x})$, $\left\langle q_{i}\left(\bar{x}_{i}, t_{i}\right), \quad \eta_{i}\left(y_{i}, \bar{x}_{i}\right)\right\rangle+g_{i}\left(\bar{x}, y_{i}\right) \notin\left(-\operatorname{int} C_{i}(\bar{x})\right)$ for all $y_{i} \in S_{i}(\bar{x})$ and all $t_{i} \in$ $T_{i}(\bar{x})$.

Remark 5.2. With the same arguments as corollary 5.1, we can show that Theorems 5.2-5.4 can be applied to establish the Debreu vector equilibrium theorems and the Nash vector equilibrium theorems.

Acknowledgment

This research was supported by the National Science Council of the Republic of China. The author wish to express his gradtitude to the referees for their valuable suggestions.

References

1. Ansari, Q.H., Schaible, S. and Yao, J.C. (2000), The system of vector equilibrium problems and its applications, Journal of Optim Theory and Applications 107, 547-557.
2. Ansari, Q.H. Schaible, S. and Yao, J.C. (2000), The system of generalized vector equilibrium problems with applications, Journal of Global Optim 22, 3-16.
3. Ansari, Q.H., Chan, W.K. and Yang, X.Q. (2004), The system of vector quasi-equilibrium problems with applications, Journal of Global Optim 29, 45-57.
4. Aubin, J.P. and Cellina, A. (1994), Differential Inclusions, Springer Verlag, Berlin, Heidelberg, Germany.
5. Blum, E. and Oettli, W. (1994), From optimization and variational inequalities to equilibrium problem, The Mathematical Students 63, 123-146.
6. Browder, F.E. (1965), Nonexpansive nonlinear operators in a Banach space, Proceeding National Academic Science USA 54, 1041-1044.
7. Browder, F.E. (1968), The fixed point theorem of multivalued mappings in topological linear spaces, Mathamatical Annal 177, 283-301.
8. Chen, M.P. Lin, L.J. and Park, S.(2003), Remarks on generalized quasi-equilibrium problems, Nonlinear Analysis 52, 433-444.
9. Debreu, G. (1952), A social equilibrium existence theorem, Proceeding National Academic Science USA 38, 886-893.
10. Deguire, P. Tan, K.K., and Yuan, G.X.Z. (1999), The study of maximal elements, fixed point for Ls-majorized mappings and the quasi-variational inequalities in product spaces, Nonlinear Analysis 37, 933-951.
11. Ding, X.P. and Tarafdar, E. (2000), Generalized vector variational-like inequalities without monotonicity. In: Giannessi, F. (ed.), Vector Variational Inequalities and Vector Equilibria: Mathematical Theorem, Kluwer Academic Publishers, Dordrecht, Holland, pp.113-124.
12. Fu, J.Y. and Wan, A.H. (2002), Generalized vector equilibria problems with set-valued mappings, Mathematical Methods Operativen Research 56, 259-268.
13. Gohde, D.(1965), Zum Prinzip der kontraktuen Abbildung, Mathematical Nachs 30, 251-258.
14. Goebel, K. and Kirk, W.A. (1990), Topics in Metric Fixed Point Theorem, Cambridge University Press, Cambridge.
15. Hadjisavvas, N. and Schaible, S. (1998), From scalar to vector equilibrium problem in the quasimonotone case, Journal of Optim Theory and Applications 96, 297-307.
16. Kirk, W.A. (1965), A fixed point theorem for mappings which do not increase distance, American Mathematical Monthly 72, 1004-1006.
17. Kirk, W.A. (1986), Nonexpansive mapping on product spaces, set-valued mappings, k-uniform rotundity, nonlinear functional analysis and its applications. In:Browder, F.E. (ed.), American Mathematical Society Symposium Pure Mathematical 45, 51-64.
18. Khanh, P.Q. and Luu, L.M. Some existence results for vector quasi-variational inequalities involving multifunctions and applications to traffic equilibrium problems, Journal of Global Optim (to appear).
19. Lin, L.J.and Park, S. (1998), On some generalized quasi-equilibrium problems, Journal of Mathematical Analysis Applications 224, 167-181.
20. Lin, L.J. and Yu, Z.T.(2001), Fixed point theorems and equilibrium problems, Nonlinear Analysis 43, 987-999.
21. Lin, L.J. Yu, Z.T. and Kassay, G. (2002), Existence of equilibrium for multivalued mappings and its applications to vectorial equilibira, Journal of Optim Theory and Applications 114, 189-208.
22. Lin, L.J. Ansari, Q.H. and Wu, J.Y. (2003), Geometric properties and coincidence theorems with applications to generalized vector equilibrium problem, Journal of Optim Theory and Applications 117, 121-137.
23. Lin, L.J. and Ansari, Q.H., Some existence results for solutions of generalized vector quasi-equilibrium problems (to appear).
24. Lin, L.J. and Yu, Z.T. (2001), On some equilibrium problems for multivalued maps, Journal of Computational Applied Mathematics 129, 171-183.
25. Lin, L.J., Chen, L.F. and Ansari, Q.H., Generalized abstract economy and solution of generalized vector quasi problems, Journal of Optimization Theory and Applications (to appear).
26. Lin, L.J. and Liu, Y.H. Existence theorems of system of generalized vector quasiequilibrium problems and optimization problems, (preprint).
27. Nash, J. (1951), Non-cooperative games, Annals of Mathematics, 54, 286-295.
28. Takahashi, W. (2000), Nonlinear Functional Analysis, Yokohama Publishers, Yokohama.
29. Tan, N.X. (1985), Quasi-variational inequalities in topological linear locally convex Hausdorff spaces, Mathematicsche Nachrichen, 122, 231-245.
30. Wu, X. (1997), A new fixed point theorem and its applications, Proceeding American Mathematical Society 125, 1179-1183.
